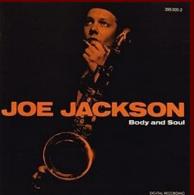


Agroecology for IPM (I) <u>Weed Management</u>

Paolo Bàrberi


Institute of Life Sciences Sant'Anna School of Advanced Studies Pisa (Italy)

4th ENDURE Summer School 'Agroecological engineering for crop protection', Volterra 8-12 October 2012

Lecture outline

- The importance of weed management in the context of IPM (and organic agriculture)
- Integrated Weed Management System (IWMS): the agroecological approach to weed management
- A snapshot on weed biology, ecology and community dynamics: essential knowledge for IWM
- A snapshot on preventive, cultural and direct methods
- Case study on system approach to IWM
- Going wider: weed/insect functional interactions and habitat diversity

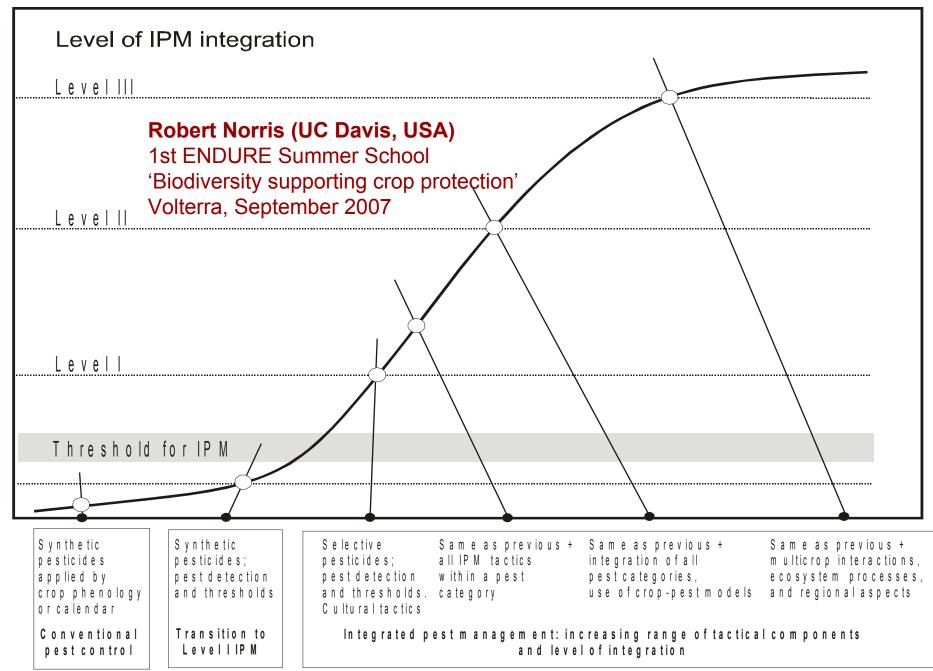
'You can't get what you want (till you know what you want)' Joe Jackson (Body and Soul, A&M Records, 1984)

An ante-litteram definition of system approach

Then, in natural sciences, is the composite thing, the thing as a whole that mainly interests us, and not its components, that cannot be taken aside from the thing itself

Aristotles

(after Altieri, 1995)



The theoretical framework

Deep knowledge of agro-ecosystem structure and components

INSTITUTE OF LIFE SCIENCES System approach

The importance of weed management in agricultural crops

Vegetable and medicinal crops 🙁 😕 🙁

Integrated Weed Management (IWM)

 A strategy to maintain weed abundance below a 'threshold' of acceptable damage through the integration of preventive, cultural, genetic, mechanical, biological and chemical tactics (control means)

Shaw, 1982 Walker & Buchanan, 1982 Regnier & Janke, 1990 (modified)

Theoretical basis of IWM

- None of the tactics per se can provide adequate weed control
- Systemic approach (Integrated Weed Management System - IWMS): the cropping system defines the spatial and temporal framework of an IWM strategy
- An IWMS is not aimed to obtain outstanding weed control in the short term but constant good weed control in the long-term

Theoretical basis of IWM

- An IWM strategy is composed of several tactics to:
 - Reduce on-field weed emergence by acting before the onset of the crop growing season (*preventive weed management*)
 - Increase crop competitive ability against weeds (*cultural weed management*)
 - Eliminate weeds emerging during the crop growing season (*direct weed management*)
 - Terminology: Management vs Control

Tactics usable in an IWM strategy

1. PREVENTIVE

2. CULTURAL

3. DIRECT

Tactics usable in an IWM strategy

Tactic	Category	Main effect	Example	Applicability to fruit tree crops	
Crop rotation	Preventive	Reduction of weed emergence		No	
Soil tillage	Preventive + direct	Reduction of weed emergence + weed destruction	Ploughing, discing, hoeing, cultivation	Yes	
Cover crops	Preventive + cultural	Reduction of weed emergence and/or competition	Green manuring prior to orchard planting, between- rows living mulch	Yes	
Mulching	Preventive + cultural	Reduction of weed emergence and/or competition	In-row plastic mulches	Yes	
Flame-weeding	Preventive + direct	Reduction of weed emergence + weed destruction	Use of shielded LPG-propelled burners	Yes (scarce)	
Soil solarisation	Preventive	Reduction of weed emergence	Use before orchard planting	Yes (scarce)	
Genotype choice	Cultural	Reduced weed competition	Use of stress- tolerant cvs (e.g. higher ability to take up soil water and nutrients)	Yes	
Planting pattern	Cultural	Reduced weed competition	Reduced between- rows or in-row distance	Yes (scarce)	
Fertilisation	Cultural	Reduced weed competition	Localised (in-row) application of fertilisers	Yes	
Irrigation	Cultural	Reduced weed competition	Trickle/drip irrigation	Yes	

Weed biology and ecology

 Knowledge of the basic biological and ecological features of major weeds and of weed communities is an essential prerequisite for designing any sustainable weed management strategy

 The more we want to reduce reliance on pesticides, the more we need to surrogate them with biological and ecological knowledge

Cousens & Mortimer (1995)

Weed **ecophysiological groups** and **false seedbed technique**

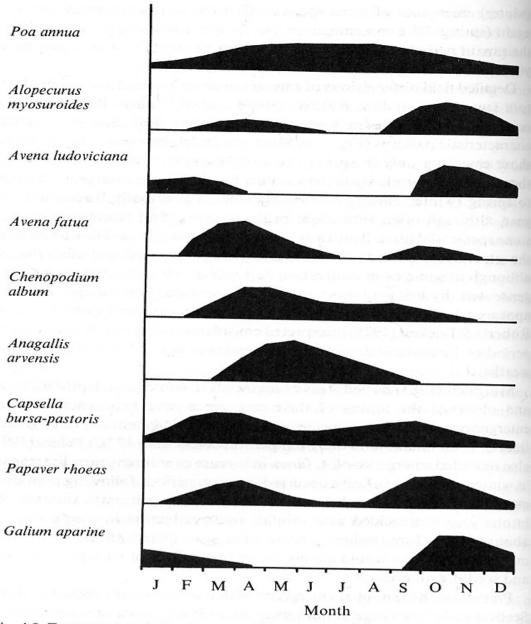
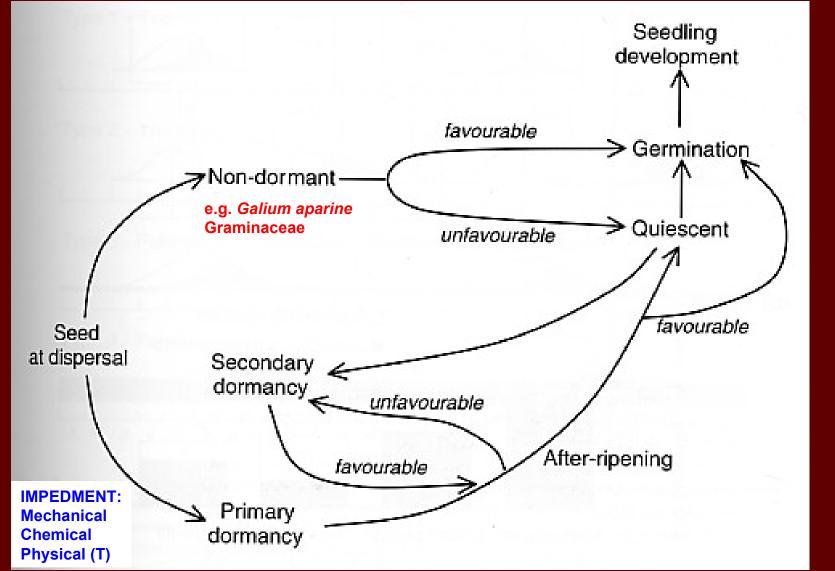



Fig. 4.8. Emergence periods of a range of temperate arable annual weeds in the UK (after Mortimer, 1990). The height of the shaded area indicates the relative frequency of emergence.

Seed dormancy cycle

Foley (2001)

Weed seeds: production

 Number of seeds per plant produced with lack of competition No. viable seeds remaining with 95% control

Avena fatua	500	25
Stellaria media	2,400	120
Papaver rhoeas	17,000	850
Solanum nigrum	178,000	8,900
Amaranthus retroflexus	196,000	9,800

Speranza & Catizone (2001, modified)

Weed seeds: germination

 Optimum and maximum depth for weed seedling emergence (cm)

		Optimum	Maximum
Chenopodium album		0.5-1	5
Digitaria sanguinalis		1	4
Sinapis arvensis		1	6
Setaria viridis	2.5	7.5	
Avena fatua		2.5	17.5

King (1966, modified)

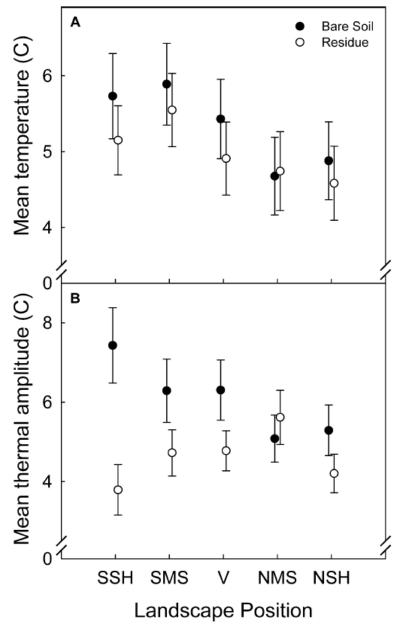
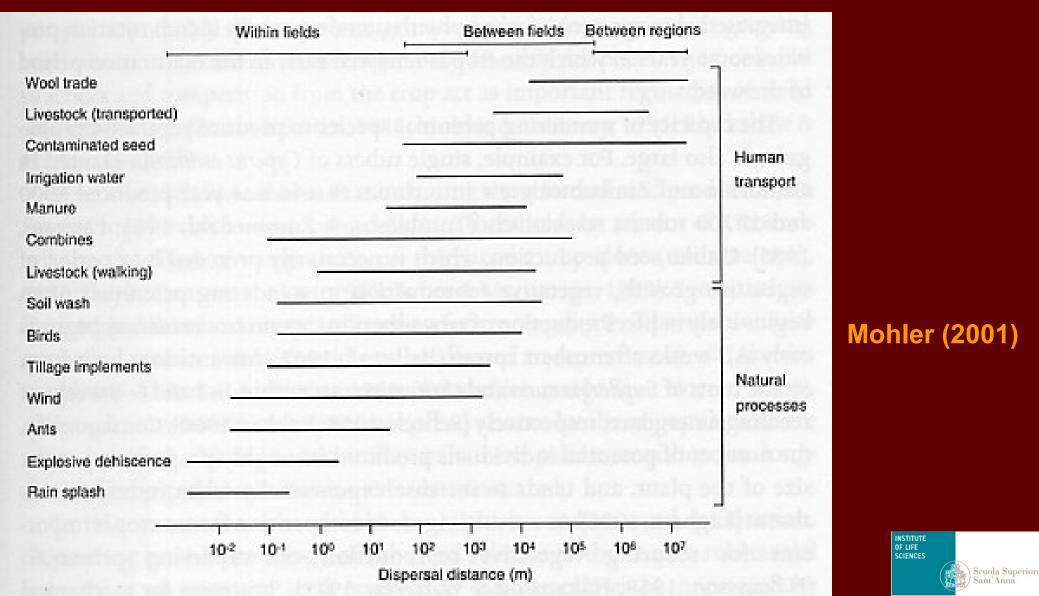


FIGURE 4. (A) Mean soil temperature and (B) thermal amplitude (\pm SE) in March 2003 from two residue levels, at five landscape positions: south shoulder (SSH), south midslope (SMS), valley (V), north midslope (NMS), and north shoulder (NSH). Thermal amplitude was calculated by subtracting the daily minimum temperature from the daily maximum temperature and averaging across days.

Germination cues, surface residues and landscape position

Page et al. (2006) Weed Sci. 54 (5), 838-846


Weed seeds: germination cues

Factor	Species	+Factor (%) ^{s,b}	–Factor (%) ^{a,b}
Light	Alopecurus myosuroides	86	0
	Amaranthus retroflexus	98	14
	Brassica arvensis	78	53
	Datura ferox	96	1
	Lolium multiflorum	95	82
	Poa annua	89	1
	Portulaca oleracea	28	12
Alternating	Poa annua	92	47
temperature	Rumex crispus	100	0
	Sonchus arvensis	57	3
	Sorghum halepense	20	7
	Stellaria media	93	47
Nitrate	Chenopodium album	92	55
	Erysimum cheiranthoides	89	57
	Plantago lanceolata	48	25
	Plantago major	93	3

Mohler (2001), modified

Weed seeds: dispersion

RGR: Relative Growth Ratio plant weight increase/plant weight/day

SLA: Specific Leaf Area leaf area/leaf weight

RWR: Root Weight Ratio root weight/plant weight

Weeds early growth

• Seed size and growth parameters (first 28 DAE)

RLI: Root Length Increase root length increase/root length/day

> Scuola Superiore Sant'Anna

SPECIES	Seed weight	RGR	SLA	RWR	Root diam	n. RLI
	(mg)	(g/g/d)	(cm²/g)	(g/g)	(mm)	(cm/cm/d)
A. retroflexus	0.41	0.349	326	0.189	0.22	0.343
C. album	0.44	0.335	329	0.153	0.20	0.285
A. theophrasti	7.8	0.244	326	0.214	0.46	0.274
X. strumarium	38	0.187	237	0.217	0.35	0.227
Sunflower	61	0.197	276	0.272	0.42	0.227
Soyabean	158	0.155	242	0.241	0.64	0.201
Correlation		-0.99**	-0.86*	0.86*	0.86*	-0.93**
with In (seed w	eight)					INSTITUTE OF LIFE SCIENCES

Seibert & Pearce (1993), modified

Coefficient of evapotranspiration

Weeds	Amaranthus g Amaranthus re Avena spp. Chenopodium Panicum milia Polygonum av Portulaca oler Setaria italica Sorghum spp.	etroflexus album ceum viculare acea		H 2O kg ⁻¹ s.s.)	1000 ⁻ 800 ⁻ 600 ⁻		
Kale Sweet pep Melon Watermelo Soyabean Tomato Common b	Dn	518 865 686 577 646 645 700	Crops	Coeff. of ET (kg	400 ·		
Potato Common v Maize	wheat	575 500 361			U	Weeds	Crops

Perennial weeds

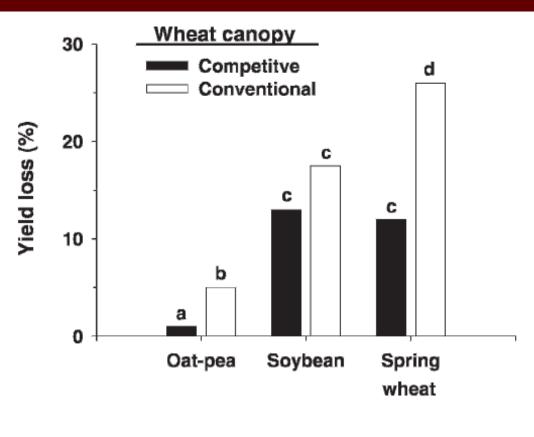
Perennial weeds

- They possess organs for vegetative reproduction
- Simple (stationary) perennials
 - Plantago spp. (plantains)
 - Rumex crispus (curly dock)
 - Taraxacum officinale (dandelion)
- Creeping (dynamic) perennials
 - Cirsium arvense (thistle)
 - Convolvulus arvensis/Calystegia sepium (bindweeds)
 - Cynodon dactylon (bermudagrass)
 - Sorghum halepense (johnsongrass)

Tactics usable in an IWM strategy

1. PREVENTIVE

2. CULTURAL


3. DIRECT

IWM: Component #1 Preventive weed management

- Aim: to reduce density of actual weed vegetation
- *Mean*: exhaustion of **potential weed vegetation**:
- 1. Reduce in-crop weed emergence
- 2. Reduce weed seeds dispersal (seed rain)
- Necessary knowledge
 - Weed community composition
 - Ecophysiology of weed seeds germination
 - Mechanisms of weed colonisation in a cropped field
 - Mechanisms of weed reproduction and survival
- Practical applications
 - Crop rotation, soil tillage, false seedbed technique, cover crops and mulching, soil solarisation

IWM: Component #1 Preventive weed management

Preceding crop

Figure 1. Yield loss in winter wheat due to rye interference, as affected by preceding crop and canopy treatment in winter wheat. Data pooled across years. Bars with identical letters are not significantly different as determined by Fisher's Protected LSD (0.05).

Anderson (2009). Weed Tech. 23, 564-568

Competitive = 67% increase in seeding rate + banded seed fertilisation

Cover crops

Mechanisms of weed suppression by cover crops

- Resource competition
 - light, water, nutrients, space
- Release of phytotoxins (allelochemicals)
 - from live plants
 - from residue decomposition
- Alteration of soil physical conditions
 - reduction of soil temperature amplitude
 - conservation of soil moisture
 - reduction of quantity and quality of transmitted radiation

Cover crops Effect on weed seedbank (seedlings m⁻²)

Cover type	CS	LIS	Mean
Crimson clover	5809	29806	13152 ab
	(9%)	(6%)	(7%)
Rye	4835	31089	12274 ab
	(24%)	(2%)	(14%)
Subterranean clover	5208	23605	11092 a
	(18%)	(26%)	(22%)
Crop stubble	6365	31688	14191 b

Moonen & Bàrberi (2004), modified

Soil solarisation Weed biomass at harvest (g m⁻²)

Soil cover ty

TransparentBlackNoPE filmPE filmcover

 $\mathbf{0}$.1

0.4 b

b

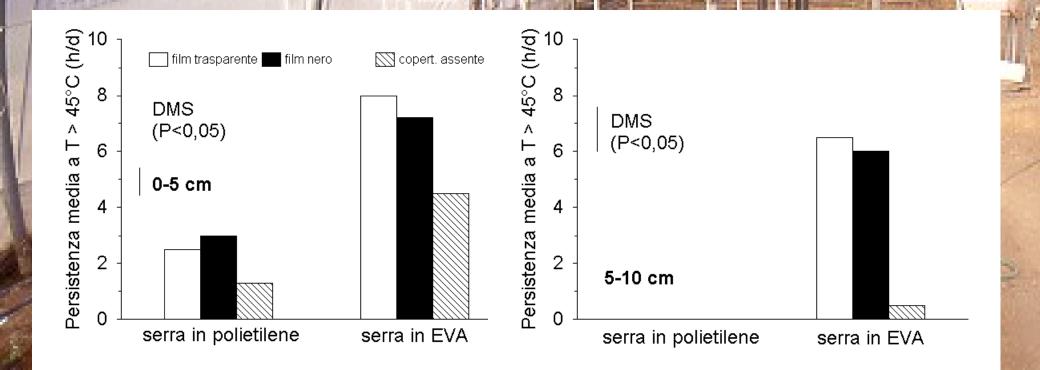
 Lettuce (13 WAS)
 0.1 b

 Radish (24 WAS)
 0.3 b

 Rocket (25 WAS)
 0.4 b

 Tomato (46 WAS)
 82.7 b

Bàrberi & Moonen (20


Crop

2

a

Soil solarisation Persistence of high T at two soil depths

Tactics usable in an IWM strategy

1. PREVENTIVE

2. CULTURAL

3. DIRECT

IWM: Component #2 Cultural weed management

- *Aim*: to reduce the need for use of **direct** weed control methods (e.g. herbicides) and increase their effectiveness
- Mean: choose cultural practices as to increase crop competitive ability against weeds
- Necessary knowledge
 - Crop/weed competitive relationships
 - Crop/weed biology and ecophysiology
 - Critical period for crop/weed competition
- Practical applications
 - Crop genotype choice, planting pattern, polycultural systems, localised fertilisation/irrigation



Crop genotype choice

More competitive cvs. are characterised by: higher height (not in all species) higher attitude to tillering/branching faster development (e.g. emergence) - higher CGR at earlier stages Fixation of higher crop competitive ability traits via genetic improvement? Competitive ability and productivity are often uncorrelated traits

Crop genotype choice

Scuola Superiore Sant'Anna

SSSUP + UNIPI trial #1 Common wheat

Common wheat: height

Early differences: growth habit

Late differences: straw height

VI WP4 Workshop - Pisa, 24-25 September 2012

Competitive varieties

Competitive Balance Index (C_b) in potato and chickpea varieties

Crop	Variety	% yield loss	C
Potato	Desiré (L)	2.6	2.88
""	Kuroda (L)	3.6	2 76
""	Agata (E)	<u>9</u> <u>1</u>	134
Chickpea	C136	67.2	-0.62
"	C118	97.9	-2.00

Competitive Balance Index (Wilson, 1988) $C_{b} = \log (B_{cw}/B_{c})/(B_{wc}/B_{w})$

Mirabelli et al. (2003)

Sowing/transplanting technique

- Increase the time interval between crop and weed emergence
 Increase the crop/weed density ratio (sowing method/time/rate)
 - Risk: sub-optimum yields
- Transplanting (e.g. vegetable crops)
 - **Crop spatial arrangement**

Polycultural systems Increase soil cover with vegetation in both space and time

- Exploitation of free ecological niches by useful species
- Need to have <u>resource use complementarity</u> between polyculture components in both <u>space</u> and <u>time</u>
- Examples: living mulches, intercropping, mixed farming systems

Tactics usable in an IWM strategy

1. PREVENTIVE

2. CULTURAL

<u>3. DIRECT</u>

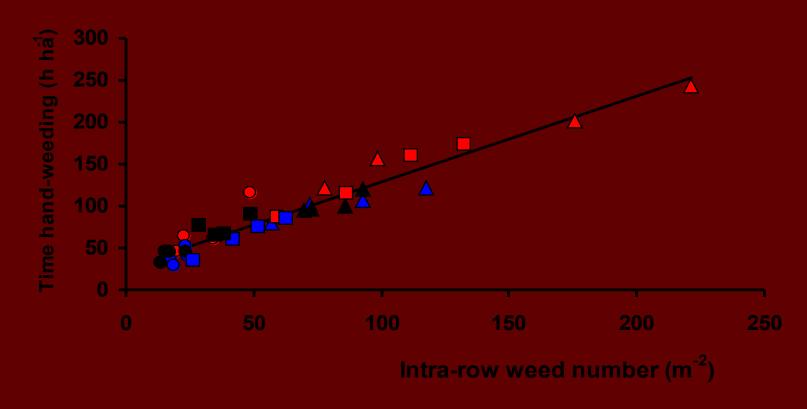
Mechanical weed control in row crops

Intra-row

Between rows

Bed-weeding platform

14 3200


Time needed for intra-row hand-weeding: 200-500 h ha⁻¹ in carrot, onion and leek

ROWITE

Relationship between intra-row weed density and time needed for hand-weeding

Melander & Bàrberi (2004)

Solutions for intra-row weeding

Finger weeder

Unconventional biological weed control

A recipe for resistance

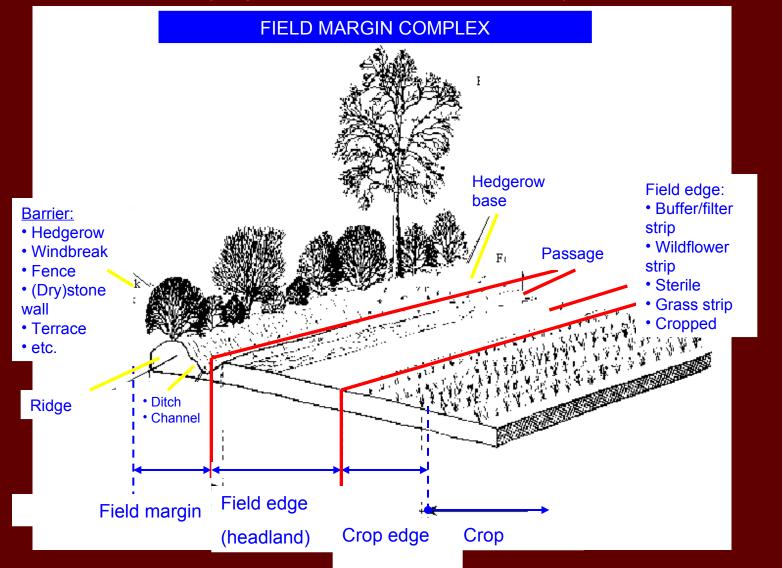
- Huge fields on huge farms across a continent
- 100% minimum tillage (often zero till)
- Minimum crop diversity mainly wheat
- The same herbicides persistently used

genetically diverse L rigidum at high density across 60 million hectares

Stephen Powles, University of Western Australia (2005)

An example of 'holistic' weed management in organic farming

Melander & Rasmussen (2000)


Year 1	Υ						
Winter wheat							
or barley							
Interrow distances:							
12.5 and 25.0 cm							
Year 2 Pow crop							

Row crop	
sugar beet or	
/egetable)	
nterrow distance:	
50 cm	

The Field Margin Complex (FMC)

(adapted from Greaves & Marshall, 1987)

INSTITUTE OF LIFE SCIENCES Scuola Superiore Sant'Anna

Examples of FMCs

A functional biodiversity study

- To study the inter-relations between:
 - Field Margin Complex (FMC, = boundary) structure
 - Richness and abundance of:
 - plants
 - beneficial insects (Coccinellidae, Syrphidae, Chrysopidae)

in the arable part of the farm

Functional analysis

- Vegetation in the FMC
- Classification in 5 groups
 - woody species
 - grasses
 - herbaceous dicots
 - grass weeds
 - dicot weeds

• FMC integrity

structural complexity (niches) management disturbance

Results

X	Y	а	b	r	n	Р
Plant species richness	% Weediness	-0.53	72.15	-0.47	62	0.0001***
FMCII	% Weediness	-0.16	62.46	-0.30	62	0.019*
FMCII	Plant species richness	0.17	23.93	0.35	62	0.005**
Plant species richness	% Weediness	-0.88	87.13	-0.76	8	0.030*
FMCII	% Weediness	-0.36	73.57	-0.75	8	0.033*
FMCII	Plant species richness	0.27	21.05	0.65	8	0.081
FMCII	Insect density	-0.14	16.06	-0.66	8	0.076
% Weediness	Insect density	0.33	-8.83	0.75	8	0.033
% Weediness	Insect density	0.44	-14.47	0.93	7	0.002**

What would you prioritise? Biological pest control or weed invasion risk?

Moonen *et al*. (2006)

Concluding remarks

- Agroecologically-based IWM is the best approach
- Cropping system diversification
- Weed management diversification
 - Conventional farming: ensures long-term sustainability of direct control measures (herbicides)
 - Organic farming: increases effectiveness of (less effective) direct non-chemical control measures
- Unravelling multitrophic interactions at different scales: the next challenge

